Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 419-25, 2015.
Article in English | WPRIM | ID: wpr-636947

ABSTRACT

Ketamine (KTM), a N-methyl-D-aspartate (NMDA) receptor antagonist, was found to has an anti-inflammatory effect, but some patients suffered from exacerbated pro-inflammatory reactions after anesthesia with KTM. The present study was aimed to examine the underlying mechanism of pro-inflammatory effects of KTM. In this study, RAW264.7 cells were exposed to KTM and NMDA alone or combined for 30 min before lipopolysaccharide (LPS) stimulation. The expression levels of IL-6 and TNF-α were detected by RT-PCR and ELISA, and those of NMDA receptors by RT-PCR in RAW264.7 cells. Additionally, the TLR4 expression was determined by RT-PCR and flow cytometry, respectively. The results showed that in RAW264.7 cells, KTM alone promoted the TLR4 expression, but did not increase the expression of IL-6 or TNF-α. In the presence of LPS, KTM caused a significantly higher expression of IL-6 and TNF-α than LPS alone. NMDA could neither alter the IL-6 and TNF-α mRNA expression, nor reverse the enhanced expression of IL-6 and TNF-α mRNA by KTM in LPS-challenged cells. After TLR4-siRNA transfection, RAW264.7 cells pretreated with KTM no longer promoted the IL-6 and TNF-α expression in the presence of LPS. In conclusion, KTM accelerated LPS-induced inflammation in RAW264.7 cells by promoting TLR4 expression, independent of NMDA receptor.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 419-425, 2015.
Article in English | WPRIM | ID: wpr-250401

ABSTRACT

Ketamine (KTM), a N-methyl-D-aspartate (NMDA) receptor antagonist, was found to has an anti-inflammatory effect, but some patients suffered from exacerbated pro-inflammatory reactions after anesthesia with KTM. The present study was aimed to examine the underlying mechanism of pro-inflammatory effects of KTM. In this study, RAW264.7 cells were exposed to KTM and NMDA alone or combined for 30 min before lipopolysaccharide (LPS) stimulation. The expression levels of IL-6 and TNF-α were detected by RT-PCR and ELISA, and those of NMDA receptors by RT-PCR in RAW264.7 cells. Additionally, the TLR4 expression was determined by RT-PCR and flow cytometry, respectively. The results showed that in RAW264.7 cells, KTM alone promoted the TLR4 expression, but did not increase the expression of IL-6 or TNF-α. In the presence of LPS, KTM caused a significantly higher expression of IL-6 and TNF-α than LPS alone. NMDA could neither alter the IL-6 and TNF-α mRNA expression, nor reverse the enhanced expression of IL-6 and TNF-α mRNA by KTM in LPS-challenged cells. After TLR4-siRNA transfection, RAW264.7 cells pretreated with KTM no longer promoted the IL-6 and TNF-α expression in the presence of LPS. In conclusion, KTM accelerated LPS-induced inflammation in RAW264.7 cells by promoting TLR4 expression, independent of NMDA receptor.


Subject(s)
Animals , Male , Mice , Anesthetics, Dissociative , Pharmacology , Cell Survival , Gene Expression Regulation , Inflammation Mediators , Pharmacology , Interleukin-6 , Genetics , Ketamine , Pharmacology , Lipopolysaccharides , Pharmacology , Macrophages , Metabolism , N-Methylaspartate , Pharmacology , Signal Transduction , Toll-Like Receptor 4 , Genetics , Metabolism , Tumor Necrosis Factor-alpha , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL